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In a previous communication we discussed the integrability of a long-wave,
short-wave interaction equation for very restricted values of the parameters in
the framework of the theory laid down by Weiss er al. Here we proceed with
the analysis in the sense of Weiss et al.,, considering values of parameters other
than those we used previously. We observe that for the combination of parameters
for which a Lax pair was obtained by another approach (Newell), the equations
considered pass the Painlevé test for integrability in the sense of Weiss et al. We
discuss several other combinations of parameters that do not pass the test. For
these cases no Lax Pair was reported by Newell.

1. INTRODUCTION

The question of the integrability of nonlinear partial differential
equations occupies a central role in the study of solitons and their properties.
For partial differential equations, which are infinite dimensional, integrabil-
ity [sometimes called “complete integrability” (Tabor and Gibbon, 1986)]
is shown by the existence of an infinite number of integrals in involution
(Gibbon et al, 1985). Zakharov and Faddeev (1972) demonstrated a pro-
cedure for finding integrals via inverse-scattering transform for the KdV
equation [also see Flaschka and Newell (1975) in the context]. The con-
sequences of this work are such that once an isospectral problem has been
found for a pde, then a direct connection can be established between the
existence of an infinity of conserved quantities and the existence of multiple
solitons. The multiple-soliton solutions can be found by the inverse scatter-
ing transform method (Ablowitz and Segur, 1981) pioneered by Kruskal
and co-workers or by other methods, such as that developed by Hirota
(1971, 1980). The constructive approach of the method of differential forms
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(Wahiquist and Estabrook, 1975) ends up providing a complete solution
of the problem in that it determines the inverse scattering transform (IST).
In the light of these observations one may say that a nonlinear partial
differential equation solvable by IST is integrable.
In an entirely different development Ablowitz et al. (1978; Ablowitz,
1980) introduced the idea of the Painlevé property in connection with the
integrability of nonlinear partial differential equations. They conjectured
that every nonlinear ordinary differential equation obtained by an exact
reduction (e.g., through similarity transformation) of an integrable nonlinear
partial differential equation (i.e., solvable by the inverse scattering method)
has the Painlevé property, namely its general solution can have no movable
singular points other than poles. Furthermore, they proposed a consequence
of the conjecture to be an explicit test of whether or not a given nonlinear
partial differential equation may be of IST class. Partial proofs of this
conjecture have been given by Ablowitz et al (1978, 1980) and McLeod
and Olver (1983). Weiss et al. (1983) extended the idea of Ablowitz ef al.
(1978; Ablowitz, 1980) directly to nonlinear partial differential equations
instead of going indirectly via ordinary differential equations found by
similarity transformations, etc. According to them, a nonlinear partial
differential equation is said to possess the Painlevé property if the solutions
of the nonlinear partial differential equation are “single-valued” in the
neighborhood of a movable singularity manifold. In addition to the referen-
ces already cited one can consult the review of Tabor and Gibbon (1986)
or Steeb et al. (1985) for further details.
According to Weiss (1985), the Painlevé test is as follows:

If the singularity manifold is determined by
¢(Zlaz2a"'1Zn)=O (1)

and u=u(Z,,...,Z,) is a solution of the pde, then we require that
u=¢* Y uep’ (2)
j=0

where u,#0, and ¢=¢(Z,,...,Z,) and u;=u,(Z,,..., Z,) are analytic
functions of (Z;) in the neighborhood of the manifold (1), and a (the
leading order exponent) is a (negative) rational number. The requirement
that the manifold (1) be noncharacteristic (for the pde) ensures that the
expansion (2) will be well defined, in the sense of the Cauchy-Kovalevskaya
theorem (Courant and Hilbert, 1962). Substitution of (2) into the pde
determines that value(s) of a, and defines the recursion relations for u;,
j=0,1,2,.... When the expansion (2) is well defined and contains the
maximum number of arbitrary functions allowed at the “resonances” (Weiss
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et al, 1983; Ablowitz, 1980; Yoshida, 1983a,b), the pde is said to possess
the Painlevé property and is conjectured to be integrable. Informally, the
resonances are the values of j for which u; are not “fixed” by the recursion
relations (i.e., are arbitrary).

The success achieved by the formalism of Weiss et al. (1983; Weiss,
1984a,b, 1986) is noteworthy.

However, the rigor of both the approaches due to Ablowitz et al. (1978;
Ablowitz, 1980) and due to Weiss e al. (1983) have been questioned by
several authors (Clarkson, 1985, 1986; Ward, 1984, 1985). Ward (1984, 1985)
suggested an approach that seems to be more rigorous than the above two
approaches and at the same time too complicated to be applied in actual
situations. Actually, in the work of Ward (1984, 1985) it could not be
observed how one might determine whether the KdV equation possess the
Painlevé property in the sense due to Ward.

In a recent communication we have applied the Painlevé test in the
sense of Weiss et al. (1983; Weiss, 1985a,b) to the equations governing the
long-wave, short-wave interaction:

A,=2S(BB*), (3a)
B,—2iB,,. = K,A,B— K;AB, +iK,A’B —2iSB>B* (3b)

where K,, K5, K,, and § are arbitrary constants, of which K, and K; may
be complex.

In that paper our analysis was restricted to some very special values
of the parameters given by K, =0, K;=0, K,=0.

In the present paper we apply the Painlevé test in the sense of Weiss
et al. (1983; Weiss, 1985a,b) to the system (3) for K,, K;, K, not simul-
taneously zero. The Painlevé test in the sense of Weiss et al. (1983; Weiss,
1985a,b) may be divided into three main steps after the substitution of (2)
in the differential equations concerned:

1. Make the leading order analysis [where one gets all possible « and
Uy in (1)].

2. Define the recursion relations for u; for the leading orders obtained
in step 1 and determine the resonance positions (those values of j
for which the recursion relations are not defined).

3. Check whether one actually gets the introduction of arbitrariness at
the resonance positions; this is ascertained only when the compati-
bility conditions that arise at the resonance positions j = r are identi-
cally satisfied for all the results at j <r.

We attempted to proceed through the above steps with general values
K,, K3, K, and S in (3) so that the analysis itself could impose restrictions
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on the parameters for the system (3) passing the Painlevé test in the sense
of Weiss et al. (1983; Weiss, 1985a,b). We could do this for steps 1 and 2,
which imposed some conditions on K,, K;, and K,. However, unless one
knows the resonance positions exactly, the checking of arbitrariness at the
resonance positions cannot be done. Hence, for step 3 this general procedure
could not be continued and we restricted ourselves to some particular values
(or combinations) of K,, K3, and K, (which obey the conditions already
imposed steps in 1 and 2. These particular cases included the physically
interesting situation discussed by Newell (1979) for which he obtained a
Lax pair. It is interesting to note that the system (3) passed the Painlevé
test (Weiss et al., 1983, Weiss, 1985a,b) for this situation. For the other
particular values of K,, K;, and K, not discussed by Newell (1979) the
system (3) did not pass the test. Actually it happens that in these situations
at least one of the conditions for passing the test [i.e., the number of arbitrary
functions in (2) should contain the maximum number of arbitrary functions
allowed at the resonances] is violated.

The equations discussed by Newell (1979) may seem to differ from
those discussed by us. However, they are actually equivalent to (3) under
scaling transformation, as shown in the following.

The equations discussed by Newell (1979) are

A,=2S(BB*),, S==1 (4a)
B,—iB,. =—K;A.B— K;AB, +iK,A’B—2iSB*B* (4b)

Under the scaling transformation

i—ai, i—»li, A=A, B- B, B*- B*
ax ax ot 29t
K K K ©)
K3—>_72, Kaéf, K4"_2‘£, S->=
the system (4) reduces to the system (3).
Newell (1979) obtained a Lax pair for (4) for
K3=1, K3=0, K4=1 (6)

Newell (1979) also obtained a Lax pair for (4) in three other situations, for
one of which the equations are related to the equations with (6) under the
transformation B - B exp(—3i | A dx) and the other two make (4) separable
when (4) transform to linear equations. Thus, we have concentrated our
investigation on (4) with (6), which under (5) is equivalent to (3) with

K,=-2, K;=0, K,=2 (7
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2. LEADING ORDER ANALYSIS
Equations (3) can be rewritten as
A, =28(BC),
B,—2iB,, = K,A.B—K;AB, +iK,A’B —-2iSB>C (8)
C,+2iC,, = K,A,C — K;AC, — iK,A’C +2iSC*B

For the Painlevé test we set
A=¢" L ¢’y  B=¢" % be'; C=¢"TL g’ (9
j=0 j=0 j=0
In leading order analysis we assume

A~agd, B~ bod’ﬁ, C~cydp”

where all a;, b;, ¢; are functions of ¢ and ¢ = x —f(¢), a prescription given
by Kruskal (first used in 1982), in order to simplify the original theory of
Weiss et al. [see the Appendix of Weiss ef al. (1983) and the introduction
of the review by Tabor and Gibbon (1986)]. By inspection we observe that

a=-1 (10a)
B+y=-1 (10b)
a0f= —28byc, (10¢)
~2iB(B—1)=~(K,+ K;8)a,+iK,a3 (10d)
+2iy(y —1) = —(K,+ K3y)a,— iK,a} (10e)

whence the dominant terms are
A,=2S8(BC),
-2iB,. = K,A.B— K ;AB_+iK,A’B
+2iC,, = K,A,C — K,AC, —iK,A°C

In the general case the constants K, and K; are complex. Here K, and K,
are the complex conjugates of K, and Kj;, and K, and S are real constants.

From equations (10) we observe that 8 and y are not uniquely deter-
mined. So we set

B=-p  (preal)
Then
y=p-1
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and equations (10) yield
agf = —28byc,
=2ip(p+1)=—(K,~ K;p)a,+iK,a; (11)
2i(p~1)(p-2)=-[K,+ Ks(p —D]a,— iK, a2

Here we have two equations quadratic in a, and p. To be consistent, we
must have:

(i) Either both the roots for a, are the same, whence we get the
condition

—p(p+1) _ K>,—-K;sp _
(P-D(p-2) Kt Kip-1) (12)

The ratio for p yields p=3 and the second ratio gives

2(K2+IZ2)=(K3+IZ3) (13)

and the single equation for g, reads
2iKai— (2K, — K3)ag+3i=0 (14)

Note that the case K,=0, p=3 is included in this case with a,=
6i/ (2K2_ K3).
(ii) Or, when the roots are different, then

K,+K,+K;(p—1)—K;p#0 (15)
and we get

B 4i(2p—1)
K>+ K,+Ky(p—1)-Ksp

(16)

ag

On the other hand, we can also solve for a2 and obtain

—2{p(p+ D[K>+ Ks(p - 1D)]+[(p—1)(p-2)(K, - K; p)I}
K4[K2+K2+(P - 1)123_ K;p]

ag= (17)

From (16) and (17) we get a connection between p and K;, K;, given as
8(2p —1)’K,={p(p+1)[K,+ K;(p-1)]
+(p-1D(p-2)(K,— K3p)}[IZZ+ K3(P —q)—-Ks;p] (18)

It may be noted that p =3 is not allowed in equation (16).

As an example of the above general discussion, we observe what
happens with the particular values of K; and K; in (8), which lead to a
situation equivalent to that for which Newell (1979) obtained a Lax pair.
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Here we have from (7)
K,=-2, K;=0, K,=2, K,=-2, K;=0
These do not satisfy (12) and hence we are left with (15)-(18).
Using these in (18), one gets p=0, 1.
Then from (16) one has

(i) p=0, a,=1i or (i) p=1, ag=—i (19)

3. RECURSION RELATION AND RESONANCES

Let us set
A=Y a(n)¢’™,  B=Y b))’  C=3 ()¢l
j=0 j=0 =0

If we substitute these in equations (8) and equate coefficients of ¢, we get

(n—1)f 28c{n—1) 28by(n—1) T Ta, X
[Kx(n—1)+pK; 2i(n—p)(n-p-1)
+2iK a,]by ~K,a,+iK,a} 0 b, = |Y
L Ksay(n~p)

[Kon—1)—(p—- 1K, 0 —2i(n+p-1)
—2iK,a4]c, x(n+p-2) C, z

—K,a,—iK,a}

i ~Riag(n+p—1)

(20)
with
n—1
X=d,,—-28 Y b,_,c,(n—1)
g=1
n—1
Y=b,2=b,i(n—p-1)f~K, ¥ a,_b,(n—q-1)
g=1
n—1 n—1 n-1
+K3 Z an—qbq(q_p)—iK4 Z Z an—q—dadbq
g=1 d=0g=0
d+g>0
n—1 n—1
+2iS Y Y bu_goa-ibC, (21)

d=0gq=0
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Z=Cn-—2 n 1(n+P 2)f KZ Z A, qc (n ‘I“l)

g=1

n—1 n—1
+K3 Z a,_ qC (q+P_1)+lK4dZ Z a,.. —q— dadcd
d~8qq>00
n—1 n-1
—2iS Z Z Cn—q—d—lcdbq (22)
d=0qg=0

The matrix occurring on the left-hand side of (20) is called the system
matrix (SM) and the resonance positions are determined by the condition
that at these the determinant of the system matrix vanishes. We obtain after
some simplification,

det[SM]=4f(r+ D)r(r—1)(r—o)(r—1)
So that the resonances are
=-1,0,1,0, 7
where o, 7 are the roots of the quadratic equation
4ar’+o'r+o"=0 (23)
where o’ and ¢” are given by (25) and (26); here:

(i) r=-1 corresponds to the arbitrariness of ¢(x, t) =x — f(1).
(ii) r=0 corresponds to the arbitrariness of one of b, and ¢, in (10).

Now, since a resonance position is meaningful if and only if it occurs at
an integer point, we demand

o+ 7 =integer (positive)

(24)
70 = integer (positive)
which lead to the conditions
o + 7 =integer (positive)
—H(—20+2iK;a,—2iK;a0— 2iK, a0+ 2iagKy) (25)

or=[(—-32p*+32p+16)+(6p —8)iK,a,
—(6p+ 2)("123“0) —(4p—6)iK,a,

—(4p+2)iK2a0+a§(K3IZ3— K2K3_K3K2)] (26)
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However, it may be noted that when o and 7 are negative, the expansion
(9) will have a probability of representing the special solution (not obtain-
able from the general solution) and not the general solution in the neighbor-
hood of the singularity manifold ¢(x,t)=0. And, when o, 7, etc., are
fractions, one may need to have the “weak Painlevé” expansions in analogy
to those for ODES (Ramani et al., 1982; Ranada et al., 1985; Graham et al.,
1985) or those for PDES (Weiss, 1986). We do not go into the details here.

From (25) one has the observation that
2i[(c+7)—5]

= K- K~ (K- K) @n

so that for a, to be nonzero we must have simultaneously
o+r=35 (28a)
K:-K;=K,-K, (28b)

For combinations other than (28b) one must have o+ 7# 5.
It should be mentioned that these conditions all hold at the values
given by (12)-(18).
3.1. Results for Leading Orders Defined in (12)-(14)
Here we have
o=3 +%i[2(Kz - Kz) —(K;— Ks)]ao
T= _%i(K3 - 123)a0
from which we can deduce
i(K3 - K:},)ao = 4(2 - T)
_ (30)
I(Kz - Kz)a() = 2(0’ - 'T) _2
From equations (28) we can have the following possible choices of (30):

a. ('er, o=3),(r=3,0=2): For =2, o =3, we get from (30) K; =
K,, K,=K,. On the other hand, for 7=3, o =2, we get

ao=4i/(K2_IZ2) (31)

along with K;— K;= K, — K, but K; # K;, K, # K,. Now from (28b), (13),
and (14) we are led to

Izs = %(Kz +3122)
K3:%(3K2+K2) (32)
K,= 3lz(K2 - 122)2
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b. (r=0,0=35), (=35, 0 =0): As before, for r=0, o =35, we get
K;=33K,+K,), K;=3K,+3K,)
ao=-8i/(K,—K,), Ki=1%(K,~K,)’
For =5, o =0, the same set of values for K;, K; is obtained with
ao=12i/(K3_K3), K4=_ﬁ(K2_IZz)2
¢. (1=1, 0=4): Here, proceeding as before, we have
K,=-3(K,—K,)’, K;=3(3K,+K,)
K,=33K,+K,), ao=-4i/(K;—K;)
d. (r=4, 0 =1): In this case we get
K4=Ti>_8(K2_ Kz)z, K, =%(3K2+ K3)
K3=%(3K2+K2), ao=8i/(K3_IZ3)

e. Now we consider (10) along with K;— K;# K,— K, i.e., for situ-
ations other than (28). From (30) we get

K:-Ky=(K:-K)A,  A=2(2-7)/(c~7-1)
whence
IZ3 =%[(/\ +2)IZ2_ (A ‘Z)Kz]

K,= (2_7))\()\_2)](K2_IZ2)2

16(2 16(2— 1) [2A°
K;=3(A+2)K,— (A -2)K,], 7#2 (33)

So the resonances occur at r=-1, 0, 1, o, 7 (K,# K., Kﬂf K;). We note

that there are no other cases for (12)-(14).

3.2. Leading Orders Defined in (15)~(18)

a. When (28) holds, i.e., when K;— K; = K,—K,, along with o+ 7=5,
we have

4i(2p—1)
K,+K+Ki(p—-1)—K;p
8(2p—1)°’Ky={p(p+ DK+ K;(p-1)]+(p-1)(p-2)
X (Ky= K3 p) Kz + Ko+ Ks(p—1) = Kap] (35)
[(—32p*+32p+16)+ (6p — 8)iKsa,+ (6p +2) (iK;a,)
—(4p —6)iK,a,— (4p +2)iK,ao+ ai( K;K; — KK,
-K;K)1=40(5-0) (36)

(34)

apg=
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If we eliminate a, between (34) and (36), we get a fourth-degree equation
in p and (35) is another equation of degree four in p, so the consistency
between these two will give conditions for the occurrence of resonance
positions at integer values of r {other than at r=—1) for a particular
combination of K,, K3, K,, K;, and K,.

The situation involving those particular values of K;, K; that lead to
situations equivalent to that for which Newell (1979) obtained a Lax pair
belong to this case. In that situation from (7) we have K,=-2, K;=0,
K,=2, K =-2, and K; =0, for which (28) is satisfied. We observe that for
those values of K,, K3, K4, K,, and K, from (35) and (34) [which are the
same as (18) and (16), respectively] one has (i) p=0, go=1i or (ii) p=1,
a,= —i [as in (19)]. With these values of p and a, one gets from (36) o =2,
3, i.e., the resonance positions for these cases are

-1,0,1,2,3 (37)

b. Another situation that arises when (28) does not hold is as follows.
We have from (27) and (18)

2if(c+71)—5]

ap= = = (38a
" K- K (KoK :
4i(2p—1)
= S 38b
KA K+ K(p- 1)~ Ksp (380)
which when equated immediately lead to
22[(K3_IZ3)“(Kz‘Kz)]+(K2+K2“K3)(U+7"‘5) (38¢)

4[(K;— K3~ (K,— K)1+(K; - K)o+ 7-5)
But we have two other conditions,
8(2p — 1Y’ Ka={p(p+ DK+ Ki(p—DI+(p—1)(p—2)
X (K,— K p)Y Ko+ K, + Ky(p—1)— K; p] (39)

and equation (36) with the right-hand side replaced by 4or (o, 7 integer
positive). So, on substitution of p from (38¢) into these equations we get
equations connecting K,, K;, K,, K;, and K,, which are to be solved for
various integral values of 7, o.

4. SEARCH FOR ARBITRARY EXPANSION COEFFICIENTS AT
THE RESONANCE POSITION

From (20) it is easy to check that, if
[Kz(r - 1) +pK3 + 2iK4a0] = Ml (403.)
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[Izz("_l)_(P_l)Ka‘zinlo]=M2 (40b)
[—Zi(r—p)(r—p—1)-—K2a0—K3a0(r-—p)+iK4ag]=M3 (40c)
[—2i(r+p—1)(r+p—2)— Kyao— Ksao(r+p—1)—iK,aj]=M,  (40d)

then the compatibility condition is as follows:

(i) When
M,#0, M,#0, M,#0, M,#0 (41a)
we have
MM, X —28co(r—1)M,Y —28by(r—1)M5Z =0 (41b)
with n=r.
(ii) When
M, =0, M,#0, M,;=0, M,#0 (42a)
we have
Y=0 (42b)
with n=r.
(iii) When
M, #0, M,=0, M;#0, M,=0 (43a)
we have
Z=0 (43b)
with n=r.

However, (41)-(43) do not exhaust all possible situations, though it is
true that they include a large number of situations and may facilitate further
investigations.

In the following we consider some particular cases.

Case I. K,=-2, K;=0, K,=2, K,=-2, K;=0. Here we discuss the
situation given in (7), (19), and (37). We have seen that we have two
branches, (p=0, a,=1i) and (p =1, ap= —i). For both branches resonance
positions are —1, 0, 1, 2, 3. The situations r = —1, 0 correspond to arbitrary
¢(x, t) and the arbitrariness of one of b, and ¢; in (10). In the following
we investigate the resonance positions r=1, 2, 3. For the branch given by
p =0, a=i we have the following

Atr=1:

a,= _% f (44a)
b, = arbitrary . (44b)

e, =—icof/4 (44c)
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subject to the compatibility condition d,= 0, which is obtained due to the
vanishing of the first row of the system matrix of (20), and is satisfied
identically.

At r=2: Here (41a) is satisfied and therefore the compatibility condi-
tion is given by (41b) with the particular values of K;, K;, p, a,, r concerned
and is identically satisfied by the results for j < 2. The expansion coefficients
are then given by

a, = arbitrary (45a)
by = —(i/32)(8by— 3if*by+ 48b,a,) (45b)
¢, =—(i/32)(8¢y+3if?co— 16 coa, — 16iSc2h,) (45¢)

At r=3: Here (43a) is satisfied and hence the compatibility condition
is given by (43b) with the particular values of K;, K;, p, a,, r concerned
and is identically satisfied by the results for j < 3. The expansion coefficients
are then given by

as=(1/2f)[—4Scobs — 4Sbocs + dy — 4S(by e, + bycy)] (46a)
by = (1/12i)[8boas+ b, + (6b, — dia, by)a, +4a, b,
+2iSh3c, —2iaib, +2iShic,+ 4iShyb,c,] (46b)
¢; = arbitrary (46¢)
Similarly, for the branch given by p=1, a,= —i, we have the following:
Atr=1:
a,=—f/4 (47a)
b,=ib,f/4 (47b)
¢, = arbitrary (47¢)

subject to the compatibility condition d,=0, which is obtained due to the
“vanishing of the first row of the system matrix of (20), and is satisfied
identically.

At r=2: Here also (41a) is satisfied and therefore the compatibility
condition is given by (41b) with the particular values of K;, K, p, a, and
r concerned and is identically satisfied by the results for j <2. The expansion
coefficients are then given by

a, = arbitrary (48a)
b, = (i/32)(8by — 3if?co— 16bya, + 16iShic,) (48b)
;= (i/32)(8¢y+3if* ¢, + 48¢ya,) (48¢c)
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At r=3: Here (42a) is satisfied and therefore the compatibility condi-
tion is given by (42b) with the particular values of K;, K;, p, a,, and r
concerned and is identically satisfied by the results for j < 3. The expansion
coeflicients are then given by

a3 = (1/2f)[—4Scob; —4Sbyc; + dy — 4S(b ¢y + bycy)] (49a)

b, = arbitrary (49b)

;= (1/—-12i)[8coas+ ¢+ (6¢, +4ia co)a, +4a,c,
—2iScib,+2iatc, —2iSciby,—4Scyb, c;] (49¢)

Thus, for both branches, (9) represents a general solution (8) containing
a maximum number of arbitrary functions allowed at the resonances satisfy-
ing the Cauchy-Kovalevskaya theorem and thus all the criteria in connection
with (1) and (2) are satisfied and the system passes the Painlevé test in the
sense of Weiss et al. (1983; Weiss, 1985a,b). According to the conjecture
of Weiss et al. (1983; Weiss, 1985a,b)), the system should be integrable in
this situation. We have discussed in the introduction that the Lax pair exists
(Newell, 1979) for this system in this situation.

Case II. p=1%, K,=K,, K;=K;, 2K,=K;, and r=-1, 0, 1, 2, 3,
which is a special situation (when 7 =2, o =3) of those considered before
in (30):

(i) r=—1 corresponds to an arbitrary ¢ = x—f(1).
(ii) r=0 corresponds to the arbitrariness of either b, or c,.
(iii) For r=+1, we get

= arbitrary (50a)
_(f_ 2iaof) b0+ (K3 + 4iK4a0)b0a1
b, = 0b
! 2(2i + Ka,) (50)
—(f+2iaof)co+ (Ks—4iK,a0) coay
= ; (50c)
2(_21 + K3a0)

(iv) For r=2 we get the following relation between the coefficients.
Here (41a) is satisfied, so that the compatibility condition is given by (41b)
with the particular values of K;, K, p, a, and r concerned, leading to

Sc, [b 1f K3albl
Kaol ° 27 2

Sh, [ . of Ksab,
CO _._._+_
Ksa, 2

—28biey+—— —2iK4a0a1b1+4i5b,boc0+2i5b§c,}

+ +2iK4a0alcl——4iSc1cob0—2iSc(2)b1] =0 (51)
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which is a differential equation in a,.

So a, is fixed and we cannot meet the requirement of the Cauchy-
Kovalevskaya theorem as utilized in the formalism of Weiss et al. (1983;
Weiss, 1985a,b). So the system (8) in this situation does not pass the Painlevé
test in the sense of Weiss et al. (1983; Weiss, 1985a,b).

Case III. Here
P=%, K4=§15(K2“IZ2)2, K3=%(3K2+ Izz)

4
K;- Ks ’

Ks = %(3122“’ K,), ap K;# K3 > K,# Izz

There is resonance at r=-—1, 0, 1, 2, 3. This situation is treated in (31).
Here also a, becomes fixed due to a compatibility condition at r =2, which
is similar to (51). Thus, for the same reason as stated in case II, the system
in this situation does not pass the Painlevé test in the sense of Weiss et al.
(1983; Weiss, 1985a,b).

Case IV. Here

(i) p=3, ap=-8i/(K;—K;), K;=33K,+K,)
K;=3K,+3K,;), K,=i(K,—K,)?, K;#K,, K,#K,
(i) p=3, a,=12i/(K;~K;), K;=3i3K,+K))
K;=3K,+3K,), K,=-7=(K,—K,’ K;#K;, K,#K,

These situations were discussed in the context of resonance determination
with the help of (30) with o, =0, 5. For both situations the resonances
are —1, 0, 0, 1, 5. So we have a double resonance at r =0, while a, is fixed
and only one of b, and ¢, is permitted to be arbitrary in (10c). So, for
reasons as stated in case II, we may infer that the system (8) does not pass
the Painlevé test in the sense of Weiss et al. (1983; Weiss, 1985a,b).

Case V. Here

(i) p=3, a,=—4i/(K5s—K;), K;=33K,+K,)
K,=i3K,+K,), K,=3(K,—-K,?, K;#K;, K,#K,
(i) p=3, a=8i/(K;—K;), K;=33K,+K,)
K;=(3K,+K,), K,=-%K,-K,?  K;#K;, K,#K,

These situations were discussed in the context of resonance determination
with the help of (30) with o, 7 =1, 4. For both the situations the resonances
are —1, 0, 1, 1, 4. So we have a double resonance at r=1. We can check
that if we do not further restrict the values of K, the double resonance at
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r=1 does not seem to be satisfied, and thus, for reasons stated in case 11,
here also we may say that the system (8) does not pass the Painlevé test in
the sense of Weiss et al. (1983; Weiss, 1985a,b).

5. CONCLUSION

We have attempted to apply the conjecture of Weiss et al. (1983; Weiss,
1985a,b) regarding integrability to the long-wave, short-wave equations.
The results are summarized in Table 1. The results do not exhaust all possible
combinations of K;. However, we could do this up to the leading order
analysis and the calculation of resonance positions, where we obtained
several restrictions on K;, K;. Unless one knows the resonance positions
exactly, one cannot check the arbitrariness at the resonance positions. For
this reason we had to restrict ourselves to some particular values (or
combinations) of K;, K; obeying the conditions already imposed in the
previous steps. We make the following observations.

1. The system (8) with K,=-2, K;=0, K,=2, K,=-2, K;=0 is
equivalent to the long-wave, short-wave equations (4) with (6), for which
Newell (1979) obtained a Lax pair, and with those K; the system (8) passes
the Painlevé test for integrability in the sense of Weiss et al. (1983; Weiss,
1985a,b).

2. There are number of other combinations of K, K; for which the
system (8) does not pass the Painlevé test for integrability in the sense of
Weiss et al. (1983; Weiss, 1985a,b). It is interesting to note that for equivalent
situations of the long-wave, short-wave equations (4), Newell (1979) did
not report the existence of a Lax pair.

At this point it might not be out of place to note that our Painlevé
analysis cannot be used to deduce the Lax pair because there is still no
concrete method to deduce a Lax pair for the coupled nonlinear equations.
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