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In a previous communication we discussed the integrability of a long-wave, 
short-wave interaction equation for very restricted values of the parameters in 
the framework of the theory laid down by Weiss et al. Here we proceed with 
the analysis in the sense of Weiss et al., considering values of parameters other 
than those we used previously. We observe that for the combination of parameters 
for which a Lax pair was obtained by another approach (Newell), the equations 
considered pass the Painlev6 test for integrability in the sense of Weiss et al. We 
discuss several other combinations of parameters that do not pass the test. For 
these cases no Lax Pair was reported by NeweU. 

1. I N T R O D U C T I O N  

The quest ion o f  the integrability o f  nonl inear  partial differential 
equat ions occupies a central role in the s tudy o f  solitons and their properties.  
For  partial differential equations,  which are infinite dimensional ,  integrabil- 
ity [sometimes called "comple te  integrabil i ty" (Tabor  and Gibbon ,  1986)] 
is shown by the existence o f  an infinite number  o f  integrals in involution 
(Gibbon  e t  al . ,  1985). Zakharov  and Faddeev  (1972) demonst ra ted  a pro- 
cedure for finding integrals via inverse-scattering t ransform for  the KdV 
equat ion [also see Flaschka and Newell (1975) in the context].  The con- 
sequences o f  this work are such that once an isospectral problem has been 
found  for a pde, then a direct connect ion  can be established between the 
existence o f  an infinity o f  conserved quantities and the existence o f  multiple 
solitons. The mult iple-soli ton solutions can be found  by the inverse scatter- 
ing t ransform method  (Ablowitz and Segur, 1981) pioneered by Kruskal  
and co-workers or by other  methods,  such as that developed by Hirota  
(1971, 1980). The constructive approach  of  the method  of  differential forms 
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(Wahlquist and Estabrook, 1975) ends up providing a complete solution 
of the problem in that it determines the inverse scattering transform (IST). 
In the light of these observations one may say that a nonlinear partial 
differential equation solvable by IST is integrable. 

In an entirely different development Ablowitz et al. (1978; Ablowitz, 
1980) introduced the idea of the Painlev6 property in connection with the 
integrability of nonlinear partial differential equations. They conjectured 
that every nonlinear ordinary differential equation obtained by an exact 
reduction (e.g., through similarity transformation) of an integrable nonlinear 
partial differential equation (i.e., solvable by the inverse scattering method) 
has the Painlev6 property, namely its general solution can have no movable 
singular points other than poles. Furthermore, they proposed a consequence 
of the conjecture to be an explicit test of whether or not a given nonlinear 
partial differential equation may be of IST class. Partial proofs of this 
conjecture have been given by Ablowitz et al. (1978, 1980) and McLeod 
and Olver (1983). Weiss et al. (1983) extended the idea of Ablowitz et al. 
(1978; Ablowitz, 1980) directly to nonlinear partial differential equations 
instead of going indirectly via ordinary differential equations found by 
similarity transformations, etc. According to them, a nonlinear partial 
differential equation is said to possess the Painlev6 property if the solutions 
of the nonlinear partial differential equation are "single-valued" in the 
neighborhood of a movable singularity manifold. In addition to the referen- 
ces already cited one can consult the review of Tabor and Gibbon (1986) 
or Steeb et al. (1985) for further details. 

According to Weiss (1985), the Painlev6 test is as follows: 

If the singularity manifold is determined by 

oh(Z,, Z2 . . . .  , Z . )  =0 (1) 

and u = u(Z l  . . . . .  Z . )  is a solution of the pde, then we require that 

u = ~b" ~ ujq5 j (2) 
j=o 

where Uo# 0, and ~b = ~b(Z1,..., Z,) and u s = u j ( Z 1 , . . . ,  Z , )  are analytic 
functions of (Zj) in the neighborhood of the manifold (1), and a (the 
leading order exponent) is a (negative) rational number. The requirement 
that the manifold (1) be noncharacteristic (for the pde) ensures that the 
expansion (2) will be well defined, in the sense of the Cauchy-Kovalevskaya 
theorem (Courant and Hilbert, 1962). Substitution of (2) into the pde 
determines that value(s) of a, and defines the recursion relations for uj, 
j = 0, 1, 2 , . . . .  When the expansion (2) is well defined and contains the 
maximum number of arbitrary functions allowed at the "resonances" (Weiss 
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et al., 1983; Ablowitz, 1980; Yoshida, 1983a,b), the pde is said to possess 
the Painlev6 property and is conjectured to be integrable. Informally, the 
resonances are the values o f j  for which uj are not "fixed" by the recursion 
relations (i.e., are arbitrary). 

The success achieved by the formalism of Weiss et  al. (1983; Weiss, 
1984a,b, 1986) is noteworthy. 

However, the rigor of  both the approaches due to Ablowitz et  al. (1978; 
Ablowitz, 1980) and due to Weiss et  al. (1983) have been questioned by 
several authors (Clarkson, 1985, 1986; Ward, 1984, 1985). Ward (1984, 1985) 
suggested an approach that seems to be more rigorous than the above two 
approaches and at the same time too complicated to be applied in actual 
situations. Actually, in the work of Ward (1984, 1985) it could not be 
observed how one might determine whether the KdV equation possess the 
Painlev6 property in the sense due to Ward. 

In a recent communication we have applied the Painlev6 test in the 
sense of  Weiss et  al. (1983; Weiss, 1985a,b) to the equations governing the 
long-wave, short-wave interaction: 

A ,  = 2 S ( B B * ) x  (3a) 

B t  - 2iBxx = K 2 A x B  - K 3 A B x  + i K 4 A  2 B - 2 i S B 2  B * (3b) 

where K2,/s  K4, and S are arbitrary constants, of which K2 and K 3 may 
be complex. 

In that paper our analysis was restricted to some very special values 
of the parameters given by K2 - 0, K 3 = 0, K4 -- 0. 

In the present paper we apply the Painlev6 test in the sense of Weiss 
et  al. (1983; Weiss, 1985a,b) to the system (3) for K2, /s K4 not simul- 
taneously zero. The Painlev6 test in the sense of  Weiss et  al. (1983; Weiss, 
1985a,b) may be divided into three main steps after the substitution of  (2) 
in the differential equations concerned: 

1. Make the leading order analysis [where one gets all possible a and 
Uo in (1)]. 

2. Define the recursion relations for uj for the leading orders obtained 
in step 1 and determine the resonance positions (those values of j 
for which the recursion relations are not defined). 

3. Check whether one actually gets the introduction of arbitrariness at 
the resonance positions; this is ascertained only when the compati- 
bility conditions that arise at the resonance positions j = r are identi- 
cally satisfied for all the results at j < r. 

We attempted to proceed through the above steps with general values 
K2,  K3,  K 4 and S in (3) so that the analysis itself could impose restrictions 
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on the parameters for the system (3) passing the Painlev6 test in the sense 
of Weiss et al. (1983; Weiss, 1985a,b). We could do this for steps 1 and 2, 
which imposed some conditions on K2, K3,  and K 4. However, unless one 
knows the resonance positions exactly, the checking of arbitrariness at the 
resonance positions cannot be done. Hence, for step 3 this general procedure 
could not be continued and we restricted ourselves to some particular values 
(or combinations) of K2, K3,  and K4 (which obey the conditions already 
imposed steps in 1 and 2. These particular cases included the physically 
interesting situation discussed by Newell (1979) for which he obtained a 
Lax pair. It is interesting to note that the system (3) passed the Painlev6 
test (Weiss et al., 1983, Weiss, 1985a,b) for this situation. For the other 
particular values of K2, K3,  and K4 not discussed by Newell (1979) the 
system (3) did not pass the test. Actually it happens that in these situations 
at least one of the conditions for passing the test [i.e., the number of arbitrary 
functions in (2) should contain the maximum number of arbitrary functions 
allowed at the resonances] is violated. 

The equations discussed by Newell (1979) may seem to differ from 
those discussed by us. However, they are actually equivalent to (3) under 
scaling transformation, as shown in the following. 

The equations discussed by Newell (1979) are 

A,  = 2 S ( B B * ) x ,  S = + 1 (4a) 

B, - iBxx = - K 3 A x B  - K.~3ABx -F iK4A2B - 2 i S B 2 B  * (4b) 

Under the scaling transformation 

a a a 1 a 
- - ~ - -  - - ~ - - -  A ~ A ,  B ~ B ,  B * ~ B *  
Ox Ox ' at 2 ot ' 

K 3  ~ -- 7 '  ' 2 

(5) 

the system (4) reduces to the system (3). 
Newell (1979) obtained a Lax pair for (4) for 

K 3 = 1, /(3 = 0, K 4 = 1 (6) 

Newell (1979) also obtained a Lax pair for (4) in three other situations, for 
one of which the equations are related to the equations with (6) under the 
transformation B ~ B exp ( - ] i  ~ A dx)  and the other two make (4) separable 
when (4) transform to linear equations. Thus, we have concentrated our 
investigation on (4) with (6), which under (5) is equivalent to (3) with 

K2 = -2 ,  K 3 = 0, K4 = 2 (7) 
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2. LEADING ORDER ANALYSIS 

Equations (3) can be rewritten as 

A ,  = 2 S ( B C ) x  

Bt - 2iBex = K 2 A x B  - K 3 A B x  + i K 4 A  2 B - 2 i S B 2  C 

C, + 2iCxx = K 2 A x C  - I ( 3 A C x  - i K 4 A 2 C  + 2 i S C 2 B  

For the Painlev6 test we set 

oo r 

A=&~' Z a/O/; B = & ~  E bj&J; 
j = 0  j = 0  

In leading order analysis we assume 

A - ao& ~, B - both ~, 

9 0 5  

(8) 

oo 
C =  ~b ~' Y~ cjO J (9) 

j = 0  

C ~ C0(~ T 

where all a~, bi, c~ are functions of t and & = x - f ( t ) ,  a prescription given 
by Kruskal (first used in 1982), in order to simplify the original theory of 
Weiss et al. [see the Appendix of  Weiss et  al. (1983) and the introduction 
of the review by Tabor and Gibbon (1986)]. By inspection we observe that 

a = -1  (10a) 

/3 + y = -1  (10b) 

a o f  = - 2 S b o c o  (10c) 

- 2 i / 3 ( / 3  - 1) = - ( K 2 +  Ka/3)ao + iK4a  2 (10d) 

+2iy(3, - 1 ) = - ( / (2  + Kay)ao - iK4a  2 (10e) 

whence the dominant terms are 

A t  = 2 S (  B C ) x  

- 2 i B x x  = K 2 A x B  - K 3 A B x  + i K 4 A 2 B  

+2 iCxx  = ~,~2Ax C - g 3 A C x  - i K 4 A 2 C  

In the general case the constants K2 and K 3 a r e  complex. Here/~z and / ~ 3  

are the complex conjugates of  K2 and K 3 ,  and g 4 and S are real constants. 
From equations (10) we observe that/3 and 3, are not uniquely deter- 

mined. So we set 

/3 = - p  (p real) 

Then 

y = p - 1  
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and equations (10) yield 

aof = -2Sboco 

-2 ip (p  + 1) = - ( K 2 -  K3p)ao+ iK4ag (11) 

2i(p - 1)(p - 2 )  = - [ / ( 2  + K3(p - 1)]a0- iK4a~ 

Here we have two equations quadratic in ao and p. To be consistent, we 
must have: 

(i) Either both the roots for ao are the same, whence we get the 
condition 

- p ( p +  1) K 2 - K 3 p  
- - 1  ( 1 2 )  

(p - 1)(p - 2 )  - g 2 + / ( 3 ( P  -- 1) 

The ratio for p yields p = �89 and the second ratio gives 

2(K2 + K2) = (K3 +/~3) (13) 

and the single equation for ao reads 

2iK4 a2-  ( 2 K 2 -  K3)ao+3i = 0 (14) 

Note that the c a s e  K 4 = 0  , p = � 8 9  is included in this case with ao-- 
6i/(2/(2 - K3). 

(ii) Or, when the roots are different, then 

K2+/(2  + K3(p - 1) - K3p ~ 0 (15) 

and we get 

4 i ( 2 p -  1) 
ao - K2 + g2+ K3(p - 1) - K3p (16) 

On the other hand, we can also solve for ao 2 and obtain 

a~= - 2 { p ( p +  1)[g2+ g3(p - 1 ) ] + [ ( p -  1)(p - 2 ) (K2-K3p) ] }  (17) 
K4[K2 + K2+ (p - 1)/(3 - K3p] 

From (16) and (17) we get a connection between p and Ki, /(i, given as 

8(2p - 1)2/(4 = {p(p + 1)[/(2 +/s  - 1)] 

+ ( p - 1 ) ( p - 2 ) ( K 2 - K 3 p ) } [ K 2 + g ~ 3 ( p - q ) - K 3 p ]  (18) 

It may be noted that p =1 is not allowed in equation (16). 
As an example of  the above general discussion, we observe what 

happens with the particular values of  Ki and /(i in (8), which lead to a 
situation equivalent to that for which Newell (1979) obtained a Lax pair. 
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Here  we have  f rom (7) 

K2 = - 2 ,  K 3 = 0, K 4 = 2, / ~ 2  = - 2 ,  / ~3  = 0 
2 

These  do  n o t  sat isfy (12) a n d  h e n c e  we are left  wi th  (15) - (18) .  
U s i n g  these  in  (18), o n e  gets p = 0 ,  1. 
T h e n  f rom (16) o n e  has  

(i) p = O, ao = i o r  (ii) p = 1, ao = - i  (19) 

3. R E C U R S I O N  R E L A T I O N  A N D  R E S O N A N C E S  

Let us  set 

A= ~ as(t)cb j-l, B= ~ bj(t)cb s-p, C= ~ cs(t)~ J+v-' 
j=O  j=O j=O 

I f  we subs t i t u t e  these  in  e q u a t i o n s  (8) a n d  e q u a t e  coeff icients  o f  4,, we get  

- (n - 1)f 2Sco(n - 1) 2Sbo(n - 1) 

[K2(n-1)+pK 3 2 i ( n - p ) ( n - p - 1 )  
+ 2 iK4ao]b o -K2a o + iK4a2o 0 

;L K3ao(n -p)  
[K2(n - 1 ) -  ( p -  1)K3 0 -2i(n +p - 1) 

- 2iK4ao]c o x ( n + p -2)  
- / (2ao-  iK4a ~ 
- - / (3ao( t l  + p  -- 1) 

1 b. 

r 

=I] 
(20) 

with  

n--1 

X = a . _ l - 2 S  ~ b ._qCq(n-1)  
q = l  

n - 1  

Y = b . _ 2 - b . _ , ( n - p - 1 ) f - K z  Y~ a . _ q b q ( n - q - 1 )  
q = l  

n--1 n--I  n--1 

+K3 ~ a . _ q b q ( q - p ) - i K 4  ~ ~ an_q_dadbq 
q = l  d=O q=O 

d + q > O  

n--1 n--1 

+ 2 i S  ~ ~ bn_q_d_lbdCq 
d=O q=O 

(21) 
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n--I  

Z=(Y , -2 -Cn- l (n+p-2) f -K .2  ~ an_qCq(n-q-1) 
q = l  

n-- I  n--1 n-- I  

+/~3 ~ a._qCq(q+p-1)+iK4 ~ E a.-q-dadCd 
q = l  d = 0  q = 0  

d + q > 0  

n - 1  n - 1  

-2iS ~ Y, C.-q-d-lCdbq (22) 
d = 0  q = 0  

The matr ix  occurr ing on the lef t -hand side of  (20) is called the sys tem 
matr ix  (SM) and the resonance  posi t ions are de te rmined  by  the condi t ion  
that  at these the de te rminan t  o f  the system matr ix  vanishes.  We obta in  af ter  
some simplif ication,  

de t [SM] = 4 f ( r +  1 ) r ( r -  1 ) ( r -  o - ) ( r -  ~-) 

So that  the resonances  are 

r = - 1 ,  O, 1, tr, ~" 

where  or, r are the roots  o f  the quadra t ic  equa t ion  

4r2+ or ' r+  or"= 0 (23) 

where  or' and  or" are given by (25) and (26); here: 

(i) r = - 1  cor responds  to the arbi t rar iness  of  r t) = x - f ( t ) .  
(ii) r = 0 cor responds  to the arbi trar iness o f  one of  bo and Co in (10). 

Now,  since a resonance  posi t ion is mean ingfu l  if  and only if it occurs  at 
an  integer point ,  we d e m a n d  

or + r = integer (posi t ive)  
(24) 

~-or = integer (posit ive) 

which lead to the condi t ions  

or + �9 = integer (posi t ive)  

= -�88 (25) 

or~- = 1[ ( -32p2 + 32p + 16) + (6p - 8) iKaao 

- (6p + 2) (i/~ 3 ao) - (4p - 6) iK2 ao 

- (4p + 2) ig2ao + aE(K3/~3 - K2/(3 - K3/~2) ] (26) 
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However, it may be noted that when 0. and r are negative, the expansion 
(9) will have a probabili ty of  representing the special solution (not obtain- 
able from the general solution) and not the general solution in the neighbor- 
hood of the singularity manifold ~(x ,  t )=O. And, when o-, r, etc., are 
fractions, one may need to have the "weak Painlev4" expansions in analogy 
to those for ODES (Ramani et aL, 1982; Ranada et al., 1985; Graham et al., 
1985) or those for PDES (Weiss, 1986). We do not go into the details here. 

From (25) one has the observation that 

2i[(0.+ ~)-5] 
ao - (K3 - R3) - (K2- /~2)  (27) 

so that for ao to be nonzero we must have simultaneously 

0. + r = 5 (28a) 

K3 -/~3 : K2 - /~2 (28b) 

For combinations other than (28b) one must have 0. + r # 5. 
It should be mentioned that these conditions all hold at the values 

given by (12)-(18). 

3.1. Results for Leading Orders Defined in (12)--(14) 

Here we have 

o- = 3 + Ai[2(K2-- K2) - (K3 - K3)]ao 

r = 2 -li(K3 -/~3) ao 

from which we can deduce 

i(K3 - /~3)  ao = 4(2 - r) 
(30) 

i(K2 - /~2)  ao = 2(0- - r) - 2  

From equations (28) we can have the following possible choices of  (30): 

a. ( r = 2 ,  0 .=3) ,  ( r = 3 ,  0 .=2) :  For r = 2 ,  0 .=3,  we get from (30) K3=  
K3, K2 =/~2. On the other hand, for r = 3, 0. = 2, we get 

ao = 4 i / (K2  - K.2) (31) 

along with K3 - /~3  = K2 - / ~ z ,  but K3 #/~3,  K2 #/~2. Now from (28b), (13), 
and (14) we are led to 

/~3 = �89 + 3K2) 

K3 = �89 +/~2) (32) 

K4 = ~2(K2 - g2) 2 
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b. ( r = 0 , 0 - = 5 ) ,  ( r = 5 ,  0 -=0) :  As before,  for r = 0 ,  0 -=5 ,  we get 

K3 = �89 g2) ,  R3 = �89  

ao = -8 i / (K2  - / (2) ,  K4 = 1~8(K2 - / ( 2 )  2 

For  r = 5, or = 0, the same set o f  values for g 3 ,  /~3 is obta ined with 

ao = 12i/(K3 - K3), K4 = - ~  (K2 - / ( 2 )  2 

c. ( r =  1, 0 -=4) :  Here, proceeding as before,  we have 

K4 = - ~2(K2 --/~2) 2, g 3 = �89 g 2 + g2) 

/s = �89 + K=), ao = -4 i / (K3  -/~3) 
d. ( r  = 4, 0- = 1): In this case we get 

K 4 = t~8(K 2 - K2) 2, K 3 = �89 K 2 + K2) 

/~3 = �89 + K2), ao=8i/(K3--K3) 

e. N o w  we consider  (10) along with K 3 - K 3 y  ~ K 2 - / ( 2 ,  i.e., for situ- 
ations other  than (28). F rom (30) we get 

K 3 - R 3 = ( K 2 - R 2 ) X ,  a = 2 ( 2 - r ) / ( 0 - - r - 1 )  

whence 

/(3 = l [ ( a  + 2)K2 - (h - 2)K23 

1 
K4 16(2_r)2[~A2-(2-r )A(A-2)] (K2- f f~2)  2 

K3=�89  r # 2  (33) 

So the resonances  occur  at r = - 1 ,  0, 1, 0-, r (K2 y~/(2, K3 y~ I~3). We note 
that  there are no other  cases for  (12)-(14).  

3.2. Leading Orders Defined in (15) - (18)  

a. When  (28) holds,  i.e., when K 3 - / ( 3  = K2 - / ( 2 ,  along with 0-+ r = 5, 
we have 

4i(2p - 1) 

ao - K 2 + / ( 2 + / ( 3 ( P  - 1) - K3p (34) 

8(2p -- 1)2K4 - {p(p + 1 ) [ / (  2 + I~3( p - 1)1 + (p  - 1)(p - 2) 

x ( K 2 - K 3 p ) } [ K 2 + g 2 + g 3 ( p - 1 ) - K 3 p ]  (35) 

[ ( - 3 2 p  2 + 32p + 16) + (6p - 8) iK3ao + (6p + 2)(iK3ao) 

- ( 4 p  - 6 ) i K 2 a o -  (4p + 2)iK:ao+ a2(K3K3 - K2R3 

-K3/(2)1 = 40"(5 - 0-) (36) 
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If  we eliminate ao between (34) and (36), we get a fourth-degree equation 
in p and (35) is another equation of degree four in p, so the consistency 
between these two will give conditions for the occurrence of  resonance 
positions at integer values of r (other than at r = - l )  for a particular 
combination of /s  K3, /~2,/~3, and K4. 

The situation involving those particular values of Ki, /~i that lead to 
situations equivalent to that for which Newell (1979) obtained a Lax pair 
belong to this case. In that situation from (7) we have K2 = - 2 ,  K3 = 0, 
K4 = 2 , /~  = -2 ,  and/~3 = 0, for which (28) is satisfied. We observe that for 
those values of K2, K3, K4,/~z,  and/~3 from (35) and (34) [which are the 
same as (18) and (16), respectively] one has (i) p =0,  ao = i or (ii) p =  1, 
ao = - i  [as in (19)]. With these values o f p  and ao one gets from (36) ~r = 2, 
3, i.e., the resonance positions for these cases are 

- 1 ,  0, 1, 2, 3 (37) 

b. Another situation that arises when (28) does not hold is as follows. 
We have from (27) and (18) 

2i[(~r+ ~')-  5] 
ao = (K3 -/~3) - (K2- /~z)  (38a) 

4i(2p - 1) 
ao - K2 +/~2 + K3(p - 1) - K3p (38b) 

which when equated immediately lead to 

2[(K3 - / ( 3 )  - (K2 -/~2)1 + (K2 +/~2 - /~3)(  o" + T - 5) 
(38c) 

P= 4[(K3_g3)_(K2_i?,2)]+(K3_l~3)(o.+r_5) 

But we have two other conditions, 

8(2p - 1)2K4 = {p(p + 1)[K2 +/~3(P - 1)] + (p - 1)(p - 2 )  

x ( K 2 -  K3p)}[K2+ K.2+ K3(P - 1 ) -  K3p] (39) 

and equation (36) with the right-hand side replaced by 4o-r (G r integer 
positive). So, on substitution of p from (38c) into these equations we get 
equations connecting K2, K3, /~2, /~3, and K4, which are to be solved for 
various integral values of r, ~r. 

4. SEARCH FOR ARBITRARY EXPANSION COEFFICIENTS AT 
THE RESONANCE P O S I T I O N  

From (20) it is easy to check that, if 

[ K2(r - 1) + pK3 + 2iK4ao] = Mt (40a) 
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[ / (2(r  - 1) - (p  - 1 ) g  3 - -  2iK4ao] = M2 

[ - 2 i ( r  - p ) ( r  - p  - 1) - K 2 a o -  K3ao(r  - p )  + iK4a 2] = M3 

[ - 2 i (  r + p - 1)(r + p  - 2 )  - K 2 a o -  K3ao( r + p - 1) - iK4a 2] = M 4 

then the compat ib i l i ty  condi t ion is as follows: 
(i) When  

M I # 0 ,  M 2 # 0 ,  M 3 # 0 ,  M 4 # 0  

we have 

Chanda and Roy Chowdhury  

(40b) 

(40c) 

(40d) 

M 3 M 4 X  - 2Sco( r -  1) M4 Y -  2Sbo( r -  1)M3Z = 0 

with n = r. 

(ii) When  

we have 

with n = r. 

(iii) When  

M I = O ,  M 2 # O  , M3=O,  M 4 r  

Y = O  

m l ~ O  , m 2 = o ,  m 3 ~ o  , M 4 = O  

Z = 0  

we have 

(41a) 

(41b) 

(42a) 

(42b) 

(43a) 

(43b) 

(44a) 

(44b) 

(44c) 

p = 0, a = i we have the fol lowing 

At r = l :  

a,  = - � 8 8  

bl = arbi t rary 

cl = - i co f  / 4 

with n = r. 
However ,  (41)-(43)  do not  exhaust  all poss ible  si tuations,  though  it is 

true that  they include a large n u m b e r  of  si tuations and  m a y  facili tate fur ther  
investigations.  

In the fol lowing we cons ider  some par t icular  cases. 

Case  I. g 2 = - 2 ,  K 3 = 0 ,  / ( 4  = 2, /(2 = - 2 ,  /(3 = 0. Here  we discuss the 
si tuat ion given in (7), (19), and (37). We have  seen that  we have two 
branches ,  (p  = 0, ao = i) and  (p  -- 1, ao = - i ) .  For  bo th  b ranches  resonance  
posi t ions are - 1 ,  0, 1, 2, 3. The si tuations r = - 1 ,  0 co r respond  to arbi t rary  
~b(x, t) and  the arbi t rar iness  of  one of  b0 and  Co in (10). In the fol lowing 
we investigate the resonance  posi t ions r = 1, 2, 3. For  the b ranch  given by  
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subject to the compatibility condition ao = 0, which is obtained due to the 
vanishing of the first row of  the system matrix of (20), and is satisfied 
identically. 

At r = 2: Here (41a) is satisfied and therefore the compatibility condi- 
tion is given by (41b) with the particular values of  K~,/~i, P, ao, r concerned 
and is identically satisfied by the results f o r j  < 2. The expansion coefficients 
are then given by 

a2 = arbitrary (45a) 

b2 = - ( i /32)(8/~o-  3ij'2bo+48boa2) (45b) 

c2 = -( i /32)(8~o + 3/f2co - 16coa2 - 16iSe2obl) (45c) 

At r = 3: Here (43a) is satisfied and hence the compatibility condition 
is given by (43b) with the particular values of  Ki, /~, p, ao, r concerned 
and is identically satisfied by the results f o r j  < 3. The expansion coefficients 
are then given by 

a3=(1 /2 f ) [ -4Scob3-4Sboc3+d2-4S(b lc2+b2Cl)]  (46a) 

b 3 = (1/12i)[8boa3 + {)a + (6bl - 4ialbo)a2+4alb2 

+ 2iSb2c2 - 2ia~b~ + 2iSb21co + 4iSboblCl] (46b) 

c3 = arbitrary (46c) 

Similarly, for the branch given by p = 1, ao = - i ,  we have the following: 
At r = l :  

al = - f / 4  (47a) 

bl = ibof / 4 (47b) 

cl = arbitrary (47c) 

subject to the compatibility condition do = 0, which is obtained due to the 
van i sh ing  of  the first row of the system matrix of (20), and is satisfied 

identically. 

At r =2:  Here also (41a) is satisfied and therefore the compatibility 
condition is given by (41b) with the particular values of Ki, /~i, p, ao and 
r concerned and is identically satisfied by the results f o r j  < 2. The expansion 
coefficients are then given by 

a2 = arbitrary 

b2 = ( i/32)(8[~o- 3if2 eo - 16boa2 + 16iSb2 cl) 

c2 = (i/32)(8do + 3/f2Co + 48Coa2) 

(48a) 

(48b) 

(48c) 
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At r---3: Here (42a) is satisfied and therefore the compatibility condi- 
tion is given by (42b) with the particular values of Ki, /~;, p, ao, and r 
concerned and is identically satisfied by the results for j < 3. The expansion 
coefficients are then given by 

a3=(1/2jr)[-4Scob3-4Sboc3+d2-4S(blc2+bzCl)] (49a) 

b 3 = arbitrary (49b) 

c3 = (1/-12i)[8coa3+ 61 + (6cl + 4ialco)a2 + 4a~c2 

- 2iSc2b2 + 2ia2cl - 2iSc2bo - 4Scobl cl] (49c) 

Thus, for both branches, (9) represents a general solution (8) containing 
a maximum number of arbitrary functions allowed at the resonances satisfy- 
ing the Cauchy-Kovalevskaya theorem and thus all the criteria in connection 
with (1) and (2) are satisfied and the system passes the Painlev6 test in the 
sense of Weiss et al. (1983; Weiss, 1985a,b). According to the conjecture 
of Weiss et al. (1983; Weiss, 1985a,b)), the system should be integrable in 
this situation. We have discussed in the introduction that the Lax pair exists 
(Newell, 1979) for this system in this situation. 

Case II. p = l ,  K2 =/{2,  K3-/(3, 2K2 = K3, and r = - l ,  0, 1, 2, 3, 
which is a special situation (when ~-= 2, o-= 3) of  those considered before 
in (30): 

(i) r = - 1  corresponds to an arbitrary 4~ = x - f ( t ) .  
(ii) r = 0 corresponds to the arbitrariness of  either bo or Co. 

(iii) For r = +1, we get 

al = arbitrary (50a) 

- ( f  - 2iaof)bo + ( K3 + 4iK4ao)boal 
b 1 - ( 5 0 b )  

2(2i + K3ao) 

_(jr+ 2iaojr) co + (K3 - 4iKaao) coal 
Cl - 2 ( -2 i  + K3ao) (50c) 

(iv) For r = 2 we get the following relation between the coefficients. 
Here (41a) is satisfied, so that the compatibility condition is given by (41b) 
with the particular values of K~, g~, p, ao and r concerned, leading to 

dl -2SblCl+ g3aoSC~ [[~o_~+g3albl2 2ig4a~176176176 

Sbo co- K3a~bl + 2iK4aoa~cl_4iSc~cobo_2iSc2ob~ = 0  (51) 
+ K3ao 2 
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which is a differential equation in al .  
So al is fixed and we cannot meet the requirement of  the Cauchy-  

Kovalevskaya theorem as utilized in the formalism of Weiss et al. (1983; 
Weiss, 1985a,b). So the system (8) in this situation does not pass the Painlev6 
test in the sense of  Weiss et al. (1983; Weiss, 1985a,b). 

Case IlL Here 

p = �89 K4 = ~(K2 - / [ 2 )  2, K3 = �89 K2 +/[2)  

4i 
/s = 1(3/~2 + K2), a0 -- K3 _ K~' K3 # / [ 3 ,  K2 # / [ 2  

There is resonance at r = - l ,  0, 1, 2, 3. This situation is treated in (31). 
Here also aa becomes fixed due to a compatibili ty condition at r = 2, which 
is similar to (51). Thus, for the same reason as stated in case II,  the system 
in this situation does not pass the PainlevO test in the sense of  Weiss et aL 
(1983; Weiss, 1985a,b). 

Case IV. Here 

(i) p = l ,  ao=_8i/(K3_/[3),  K3 = �89 ) 

/~3 = �89 + 3/[2), K4 = ~Z-28 ( K 2 - / [ 2 )  2 , K3#K3, K2#/[2 

(ii) p =�89 ao = 12i/(K3-/[3), K3 =�89 

/[3 = �89 + 3/[2), K4 = - 3 ( K 2 - / [ 2 )  2 K3 # K3, K2 # / [ 2  

These situations were discussed in the context of  resonance determination 
with the help of  (30) with o-, ~-= 0, 5. For both situations the resonances 
are -1 ,  0, 0, 1, 5. So we have a double resonance at r = 0, while ao is fixed 
and only one of bo and Co is permitted to be arbitrary in (10c). So, for 
reasons as stated in case II,  we may infer that the system (8) does not pass 
the Painlev6 test in the sense of  Weiss et al. (1983; Weiss, 1985a,b). 

Case V. Here 

(i) p= �89  ao=-4i / (K3-K3) ,  K3 =�89 

K3 = �89 + K2) ,  K4  = ~ ( K 2 - / [ 2 )  2 , K3#K3,  K2#/[2 

(ii) p= �89  ao=8i/(K3-/[3),  K3 =�89 K2) 

/[3 = (3/[2 + K2), K4 = - ~8(K2 - /~2)  2, K3 # / [3 ,  K2 # / [ 2  

These situations were discussed in the context of  resonance determination 
with the help of  (30) with o,, r = 1, 4. For both the situations the resonances 
are - 1 ,  0, 1, 1, 4. So we have a double resonance at r = 1. We can check 
that if we do not further restrict the values of  Ki, the double resonance at 
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r = 1 does not seem to be satisfied, and thus, for reasons stated in case II,  
here also we may say that the system (8) does not pass the Painlev6 test in 
the sense of  Weiss et al. (1983; Weiss, 1985a,b). 

5. C O N C L U S I O N  

We have at tempted to apply the conjecture of  Weiss et al. (1983; Weiss, 
1985a,b) regarding integrability to the long-wave, short-wave equations. 
The results are summarized in Table I. The results do not exhaust all possible 
combinations of  K~. However,  we could do this up to the leading order 
analysis and the calculation of resonance positions, where we obtained 
several restrictions on Ki, /(i. Unless one knows the resonance positions 
exactly, one cannot check the arbitrariness at the resonance positions. For 
this reason we had to restrict ourselves to some particular values (or 
combinations) of  K~, /~  obeying the conditions already imposed in the 
previous steps. We make the following observations. 

1. The system (8) with K2 = - 2 ,  g 3 = 0 ,  K4 = 2, /~2 = - 2 ,  /(3 = 0 is 
equivalent to the long-wave, short-wave equations (4) with (6), for which 
Newell (1979) obtained a Lax pair, and with those K~ the system (8) passes 
the Painlev6 test for integrability in the sense of  Weiss et al. (1983; Weiss, 
1985a,b). 

2. There are number  of  other combinations of  K~, /(~ for which the 
system (8) does not pass the Painlev6 test for integrability in the sense of  
Weiss et al. (1983; Weiss, 1985a,b). It is interesting to note that for equivalent 
situations of  the long-wave, short-wave equations (4), Newell (1979) did 
not report the existence of  a Lax pair. 

At this point it might not be out of  place to note that our Painlev6 
analysis cannot be used to deduce the Lax pair because there is still no 
concrete method to deduce a Lax pair for the coupled nonlinear equations. 
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